

AR38011: EARTHY

Generative Design for Earth & Masonry Firchitecture

Course Introduction

Pirouz

Nourian

Computational Designer,

Firchitect,

Research Software Engineer,

Maker

Course Coordinator:

- Developing the syllabus
- Teaching maths
- Teaching programming
- Teaching computational design
- Teaching earth architecture
- Playing with mud
- Getting my hands dirty
- Shovelling dirt
- Etc.

https://genesis-lab.dev/courses/earthy/

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD


Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

LEARNING GOALS

COLLECTIVE INTELLIGENCE

Learning Goals

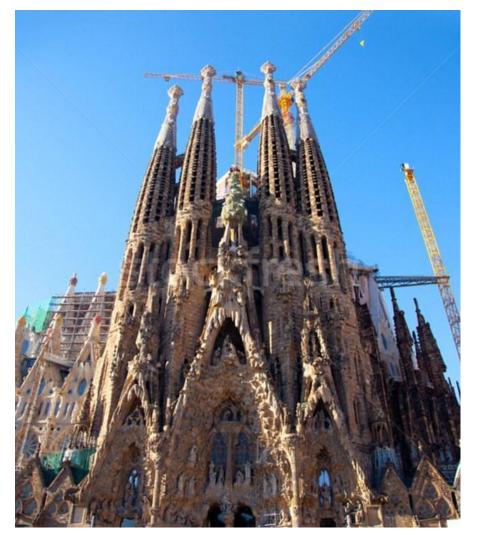
Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD


Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Exhibition

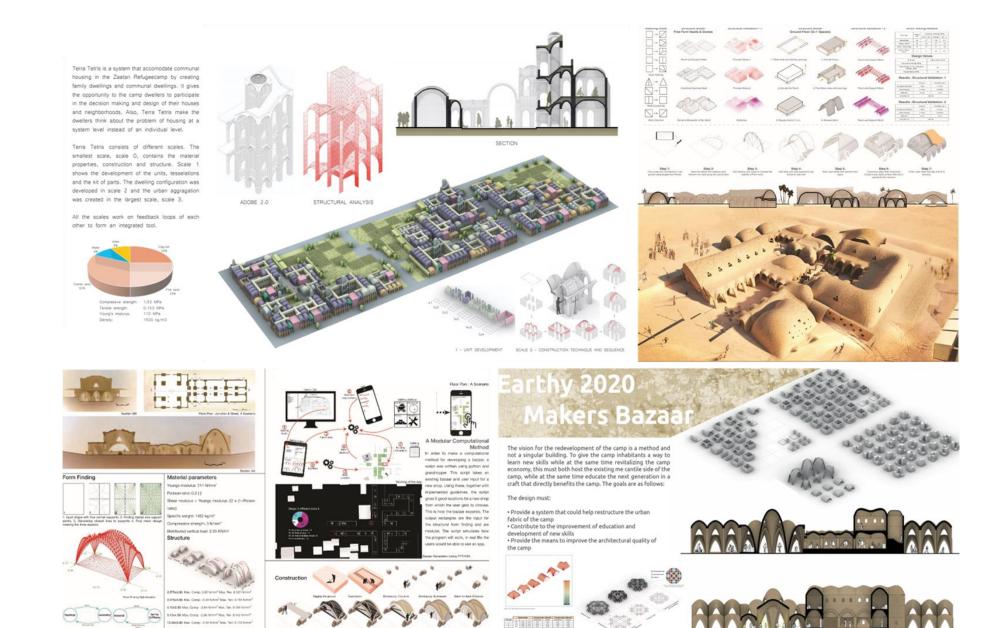


Image Credit: Student Project Terra_Tetris, Student Project Adobe_CC, Student Project Bazaar, Student Project Makers' Bazaar

LEARNING GOALS

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Exhibition

Having successfully finished the course, the student is expected to be able to:

- 0) systematically develop open-science content (including but not limited to open-source software) towards producing open, explainable, and reproducible knowledge.
- 1) analytically develop an urban/architectural configuration though analysing the urban context of the given site in terms of access to opportunities, diversity of activities, and usage intensities (considering social, cultural, and ethical aspects); making a synthesis of these analyses; and accordingly proposing an idea for a building specified in a functional configuration with an added value for the context.
- 2) develop a computational workflow consisting of procedures/algorithms to generate a masonry architectural form, satisfying both the spatial/configurational and structural requirements; optimize it for a desired structural performance given material properties; and propose a construction approach for building the form.
- 3) construct a Finite Element Model of the building as a masonry structure for performing structural analysis and validation; proposing a building method for the designed vaults through a low-tech construction process (relying on low-cost, recycled, reused materials, and local labour); and checking the stability of the structure throughout the proposed construction process.

LEARNING GOALS

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Exhibition

The objectives of the course are:

- 0) to learn to develop open-science content
- □ 1) to learn to analytically develop an urban/architectural configuration
- □ 2) to learn to utilize complex geometry and topology in designing form-effective and functional buildings and settlements by means of (visual) programming, Python (NumPy), C#, or MATLAB.
- □ 3) to learn and utilize the physical relation between structural functionality of forms and structural properties of materials

What not

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Exhibition

- it is about things that do not exist (methods and tools), so inherently a WIP (always)
- not about pushing buttons, but learning how to build your own tools
- not about making the simplest structure but the most elegant, human, and dignified
- we do not have all the answers and solutions; we will find/create them together

https://en.wikipedia.org/wiki/Earth_structure

EARTHY TEACHERS

Dr. Ir. Pirouz Nourian

Dr. Ir. Fred Veer

Assistant Professor of Design Informatics

Associate Professor of Structural Mechanics

Ir. Hans Hoogenboom

Dr. Charalampos **Andriotis**

Ir. Frank Schnater

Lecturer of Assistant Professor of Design Informatics Structural Mechanics

Learning Goals

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Learning Activities

Typical Agenda

Evaluation

Exhibition

Material-Form-Structure

Teachers

Lecturer of Design of Construction

EARTHY GUEST LECTURERS

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Exhibition

Genesis Lab:

Ir. Shervin Azadi

LEVS architecten:

• Ir. Jurriaan van Stigt

Matierra

• Ir. Pietro Degli Esposti

Arup Amsterdam

- Dr. Michele Palmieri
- Ir. Shibo Ren
- Ir. Kotryna Valeckaite

Forensic Architecture

Ir. Nour Abu Zaid

Block Research Group

- Prof. Philippe Block
- Dr. Tom van Mele
- Dr. Robin Oval

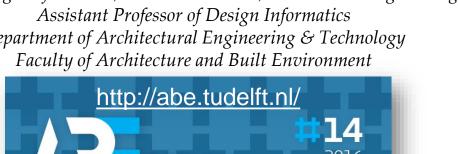
Buro Happold

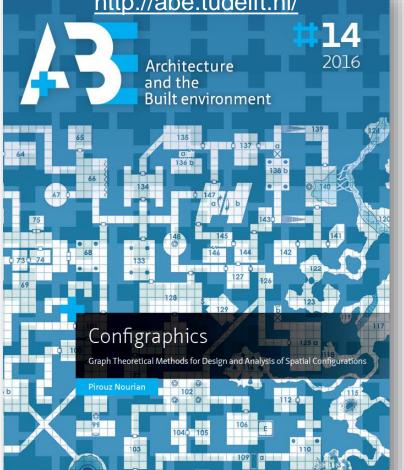
Ir. Dirk Visser

Pieters Bouwtechniek

Ir. Rick van Dijk

LEVS MATIELLA ARUP





ABOUT ME

Dr. Ir. Pirouz Nourian

PhD Design Informatics, MSc Architecture, BSc Control Engineering Assistant Professor of Design Informatics Department of Architectural Engineering & Technology

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

GENERATIVE DESIGN

Learning Goals

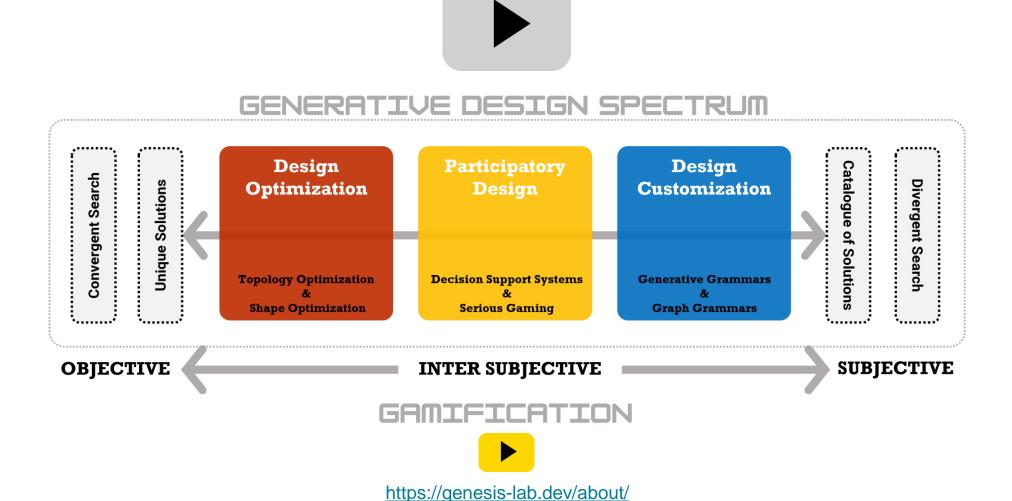
Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD


Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

COURSES ON GENERATIVE DESIGN

Applications: Computational Design (Spatial Analysis, Synthesis, Simulation, Evaluation, and Optimization **Methods:** Linear Algebra, Computational Geometry, Topology, and Graph Theory), Programming (C#, Python)

Learning Goals
Teachers

Generative Design

Earth Architecture

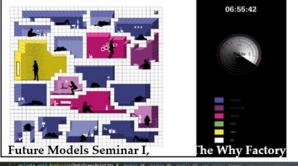
Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

PYTHON


Gitlab

Learning Activities

Typical Agenda

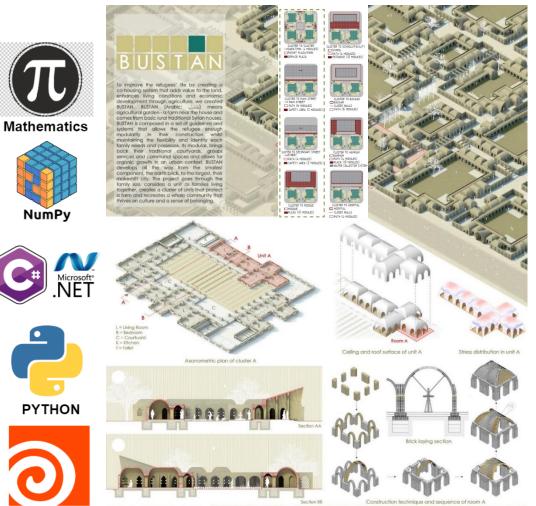
Evaluation

Student Work Samples from EARTHY 2019: BUSTAN

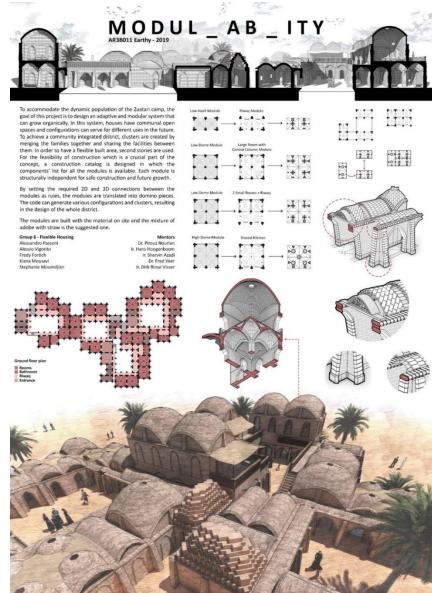
Elisa Vintimila Salas Akash Changiani, Shasan Chokshi, Kazi Fahriba Mustafa, Wannasawang, Yarai Z. Montemayor, Elisa Vintimila Salas

Student Work Samples from EARTHY 2019: MODULABITA1

Allesandro Passoni, Alessio Vigorito, Kiana Mousavi, Fredy Fortich Mora, Stephanie Moumdjian


HOUDINI

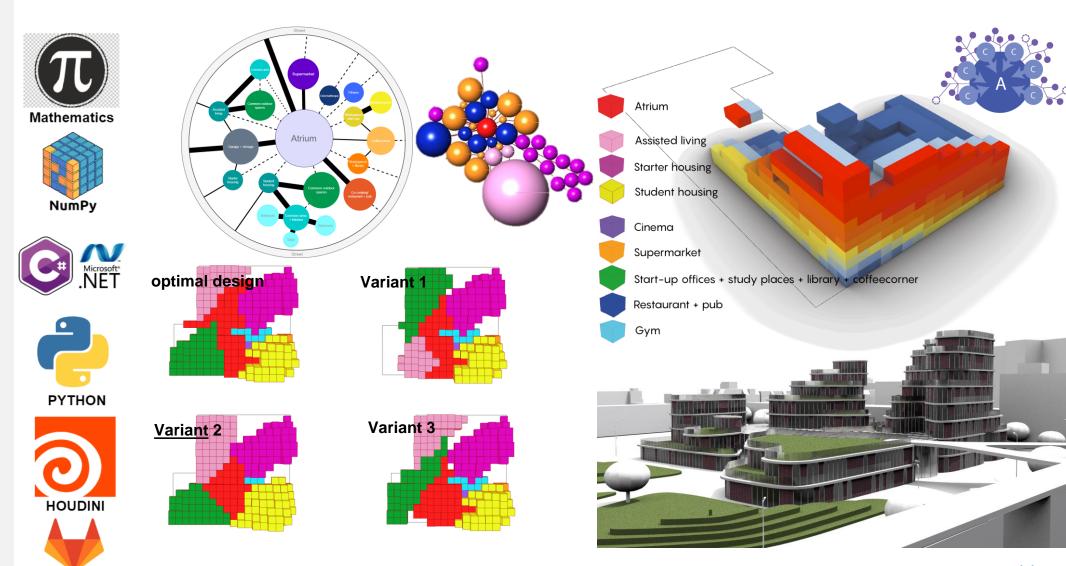
Gitlab


TUDelft

GENERATIVE DESIGN FOR EARTHY ARCHITECTURE

In collaboration with the Chair of Structural Design & Mechanics, AET, ABE

Yarai Zenteno 4922204 Kazi Fahriba Mustafa 4842960



Student Work Samples from EARTHY 2019: **COHO** Fé van Lookeren Campagne, Max Ketelaar, Ruben Schonewille

SPATIAL COMPUTING DESIGN STUDIO

In collaboration with the Chair of Computer Graphics & Visualization, EEMC

Gitlab

DIGITALIZATION OF DESIGN

Tools **Applications** A python library for topological voxelization & synthesis of configurations (2020 onward) Vecotorized Dynamic Relaxation for Masonnry Shape Optimization (2019 onward) Vecotorized Solar Evaluation Tools for Generative Design (WIP) Vernacular & Modern Raster3D tools for voxel field modelling and Isosurface Design Material-Form-Structure (2014 onward) Space Syntax for Generative Design (2013 onward) Urban Configuration Analysis for Walking and Cycling Accessibility (2012 onward)

Learning Goals

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Learning Activities

Typical Agenda

Evaluation

Exhibition

Teachers

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

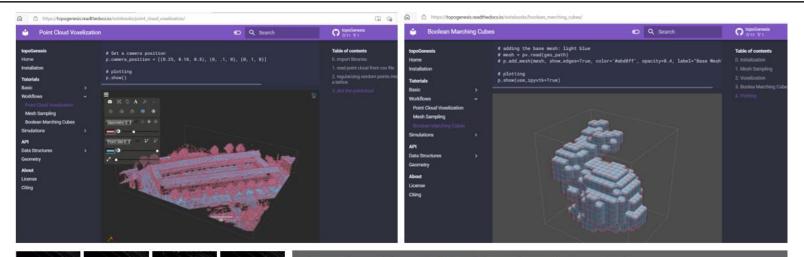
Exhibition

TOPOGENESIS

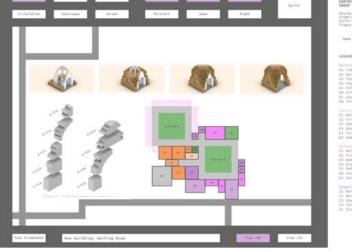
itle: topoGenesis: a python library for topological voxelization and voxel generative design

Type: Research Software Development

Year: April 2020-Present


Team: Ir. Shervin Azadi & Dr. Pirouz Nourian

Page: https://genesis-lab.dev/products/topogenesis/


GitHub Repository, Documentation

Nexus: Spatial Computing, GoDesign, EquiCity, Earthy, RasterWorks

EARTHY ARCHITECTURE

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

- domes & vaults
- wattle & daub
- rammed earth
- cave architecture (e.g. Cappadocia)
- adobe
- earth blocks, gypsum, lime
- brick and/or stones

EARTHY ARCHITECTURE NOT ABOUT WALLS; IT IS ABOUT CEILINGS!

READ MORE

MODEULAR EARTHY ARCHITECTURE

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Jeronimos Monastery Church of Santa Maria in Lisbon, Portugal

MODERN MASONRY ARCHITECTURE

Learning Goals

Teachers

Generative Design

Earth Architecture

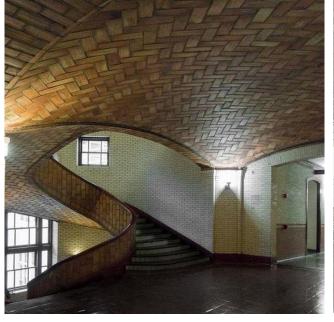
Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities


Typical Agenda

Evaluation

Exhibition

Masonry-only structures: domes & vaults

Carnegie Mellon University Hall, Architect: Rafael Gustavino

https://en.wikipedia.org/wiki/Earth_structure

https://www.designboom.com/architecture/earth-a-building-material-of-the-future/

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

- External: designing decent dwellings for displaced communities
- Internal: learning math, programming, and structural design

WHY EARTHY ARCHITECTURE?

Mid-term Alternative to Tents for Displaced Communities

External: designing decent dwellings for displaced communities

Haiti Prototype by Cal Earth Institute http://www.calearth.org/

https://www.designboom.com/architecture/haiti-prototype-by-cal-earth-institute/

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

WHY EARTHY ARCHITECTURE?

Learning Goals

Teachers

Generative Design

Earth Architecture

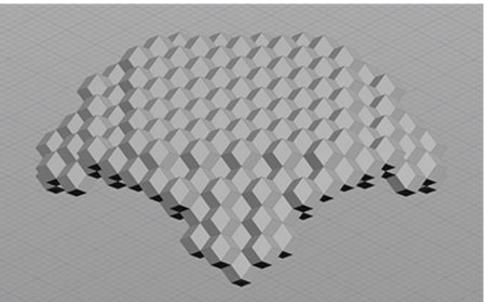
Motivation: EA

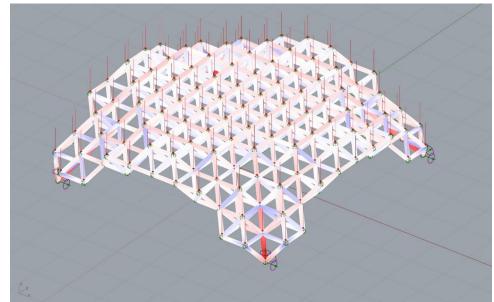
Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities


Typical Agenda


Evaluation

Exhibition

- Internal: learning math, programming, and structural design
- Computational Design (form-finding)
- Finite-Element-Method

Image Credits: Karim Daw, Shervin Azadi, Pirouz Nourian, Hans Hoogenboom

WHY GENERATIVE DESIGN? METHODS & TOOLS

Learning Goals

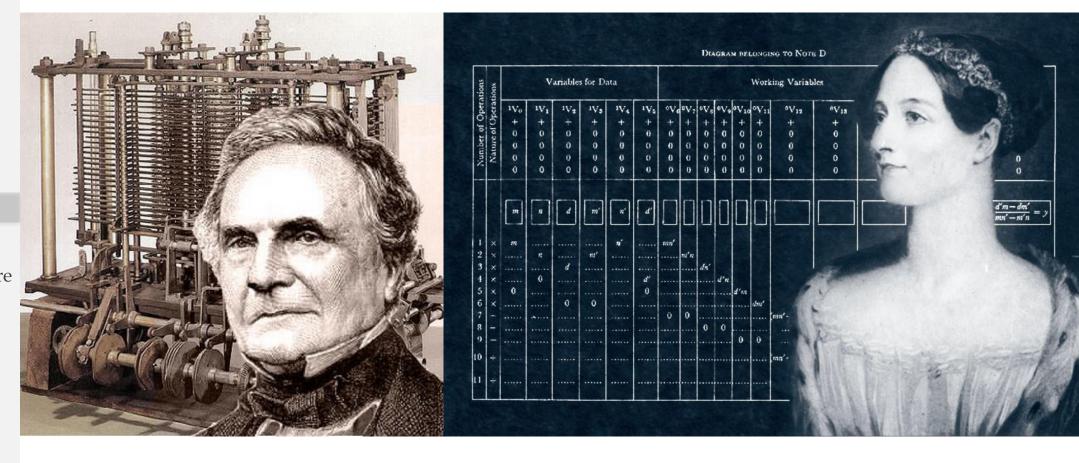
Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD


Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

WHY GENERATIVE DESIGN? METHODS & TOOLS

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

- Topology Optimization (a.k.a. Generative Design)
- Shape Optimization (a.k.a. Form-Finding)
- Discrete Construction Design (for ultimate constructability)
- Elegance, Repeatability, Process-Documentation

THE VERNACULAR & THE MODERN

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Exhibition

Left: Historic City of Yazd, a Unesco World Heritage Site, Image courtesy of <u>Yazd.Today</u>

Right: Armadillo Vault, Block Research Group, Image courtesy of <u>BRG</u>

MATERIAL-FORM-STRUCTURE

Learning Goals

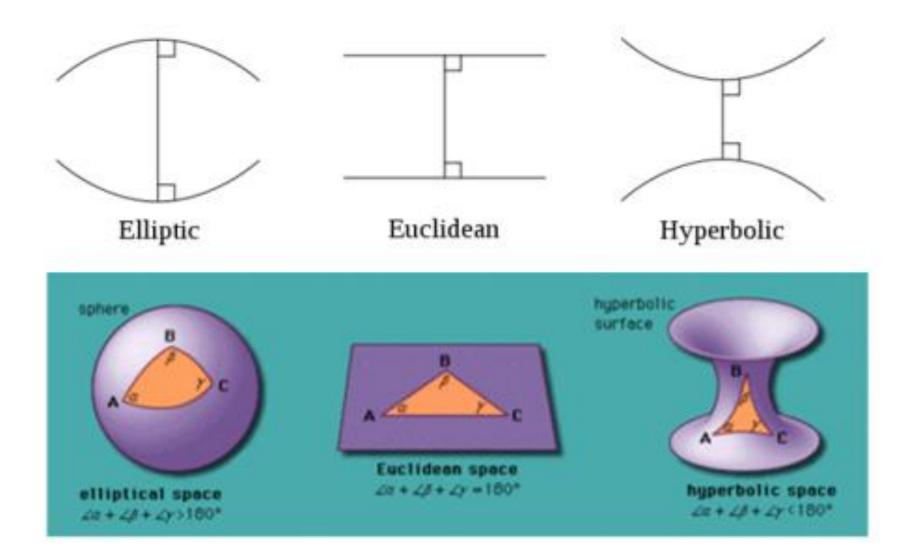
Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD


Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

MATERIAL-FORM-STRUCTURE

Learning Goals

Teachers

Generative Design

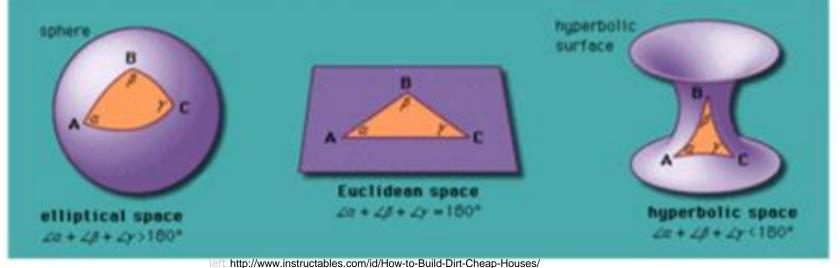
Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure


Learning Activities

Typical Agenda

Evaluation

Exhibition

https://www.colourbox.com/image/ancient-fisherman-s-wooden-hut-in-ethnic-park-of-alesund-norway-image-1723627

https://www.colourbox.com/image/ancient-fisherman-s-wooden-hut-in-ethnic-park-of-alesund-norway-image-1723627

WHAT WE DO IN THE COURSE EARTHY

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

- 1. Configuring: arrangement of a settlement for a displaced community considering accessibility of amenities, and functional layout of communal/public buildings;
- 2. Forming: devising the 3D shape of the buildings based on their functional configuration, climatic functionality, and structural performance;
- 3. Structuring: construction design of an earth building for a zero-waste circular construction process.

Configuring

Student Work Samples from EARTHY 2019: <u>Project Bustan</u>
Akash Changiani, Shasan Chokshi, Kazi Fahriba Mustafa, Thai
Wannasawang, Yarai Z. Montemayor, Elisa Vintimila Salas

Learning Goals

Teachers

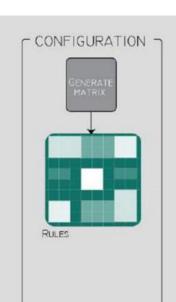
Generative Design

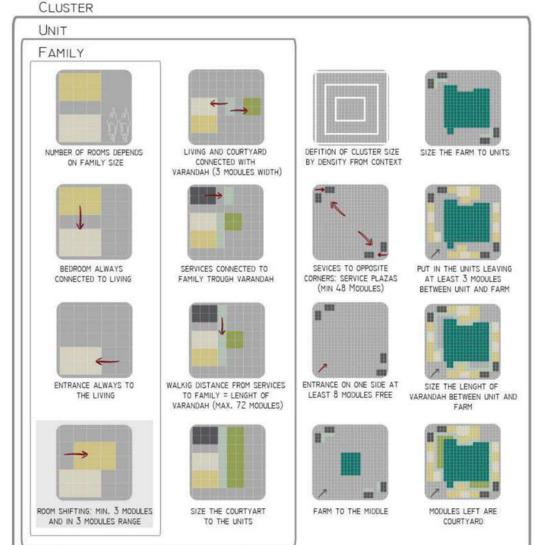
Earth Architecture

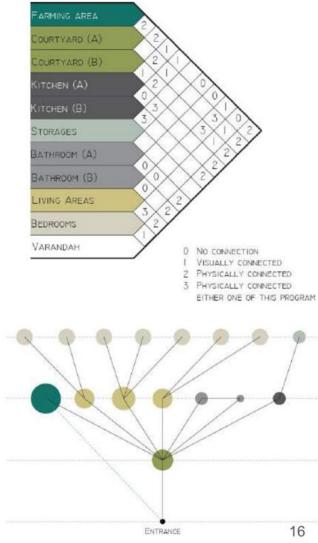
Motivation: EA

Motivation: GD

Vernacular & Modern


Material-Form-Structure


Learning Activities


Typical Agenda

Evaluation

Forming

Learning Goals

Teachers

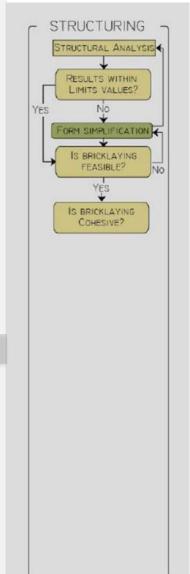
Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

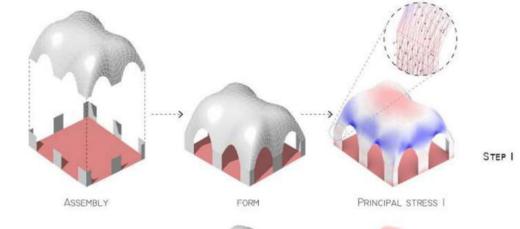
Vernacular & Modern

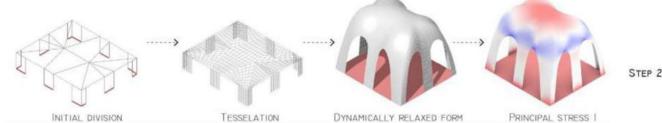

Material-Form-Structure

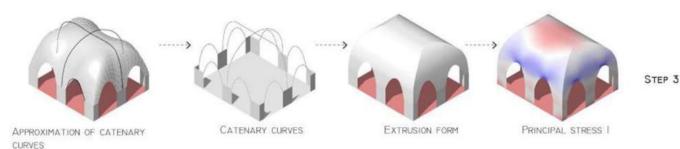
Learning Activities

Typical Agenda

Evaluation


Exhibition




Student Work Samples from EARTHY 2019: <u>Project Bustan</u>
Akash Changiani, Shasan Chokshi, Kazi Fahriba Mustafa, Thai
Wannasawang, Yarai Z. Montemayor, Elisa Vintimila Salas

SIMPLIFICATION OF FORM

	DEFLECTION (CM)	MAX. COMPRESSIVE STRESS (N/MM2)	MAX. TENSILE STRESS (N/MM2
STEP I	0.25	0.077	0.093
STEP 2	0.22	0.039	0.053
STEP 3	0.32	0.075	0.084

Structuring

Learning Goals

Teachers

Generative Design

Earth Architecture

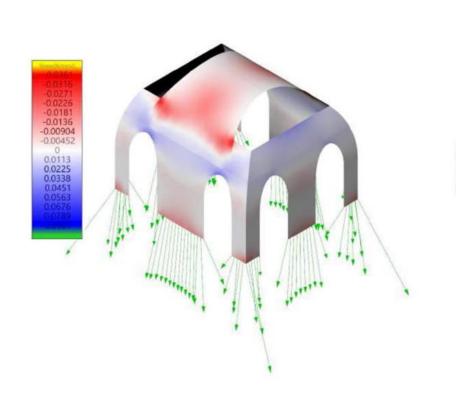
Motivation: EA

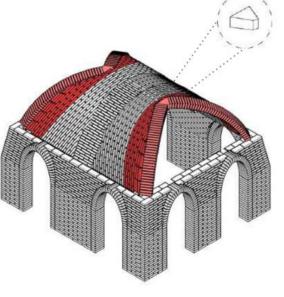
Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities


Typical Agenda


Evaluation

Exhibition

Student Work Samples from EARTHY 2019: <u>Project Bustan</u>
Akash Changiani, Shasan Chokshi, Kazi Fahriba Mustafa, Thai
Wannasawang, Yarai Z. Montemayor, Elisa Vintimila Salas

ARCHES ARE MADE WITH COMPASS.

JUNCTION OF THE TWO RIBS ARCHES FROM OPPOSITE SIDES CLOSED WITH A TRIANGULAR BRICK

WHAT WE DO IN THE COURSE EARTHY

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

- participatory planning and design;
- form-follows-function (structure, climate, ergonomics);
- shape-active structures;
- masonry/compression-only materials;
- not making the thinnest shell, but making the most liveable building;
- participatory construction;
- learning spatial mathematics & computation;
- mass-customization with 'DIY robotics';
- making prototypes with real materials;
- open-source development;
- tool-development;

PRACTICAL MATTERS

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

- Groups of 3-5 students, with clear-cut responsibilities (not roles)
- Check the online <u>course description</u>.
- There will be some costs for making the prototypes; but we will do our best to keep the total cost low.
- You do not have to be an expert in programming or structural design; but you have to be interested to learn these skills.

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

		ı								
Week No.	36	37	38	39	40	41	42	43	44	45
Quarter	Quarter 1									
Teaching week	1	2	3	4	5	6	7	8	9	10
Monday	31-Aug	07-Sep	14-Sep	21-Sep	28-Sep	05-Oct	12-Oct	19-Oct	26-Oct	02-Nov
Tuesday	01-Sep	08-Sep	15-Sep	22-Sep	29-Sep	06-Oct	13-Oct	20-Oct	27-Oct	03-Nov
Wednesday	02-Sep	09-Sep	16-Sep	23-Sep	30-Sep	07-Oct	14-Oct	21-Oct	28-Oct	04-Nov
Thursday	03-Sep	10-Sep	17-Sep	24-Sep	01-Oct	08-Oct	15-Oct	22-Oct	29-Oct	05-Nov
Friday	04-Sep	11-Sep	18-Sep	25-Sep	02-Oct	09-Oct	16-Oct	23-Oct	30-Oct	06-Nov
Saturday	05-Sep	12-Sep	19-Sep	26-Sep	03-Oct	10-Oct	17-Oct	24-Oct	31-Oct	07-Nov
Sunday	06-Sep	13-Sep	20-Sep	27-Sep	04-Oct	11-Oct	18-Oct	25-Oct	01-Nov	08-Nov
				··OTD	^ TI\/E	SCHED	ULE !!!	,		
What you do in these weeks	Programming	Configuring of C	AN ILI	edule of the contractions	vill be ir urse br	the 50 rief!	edit	23-Oct 23-Oct 25-Oct , O Building	Making	Final Evaluation
	A0	A1		A2		А	3	Document	Present	Rest
	0 Pts	15 pts		25 pts		30	pts	10 pts	20 pts	100 pts
due dates	04-Sep	11-Sep			02-Oct		16-Oct	23-Oct	30-Oct	

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Exhibition

Week	Day	Date	To Do	AM1 (9:00-9:45) AM2 (10:00-10:45)	AM3 (11:00-11:45) AM4 (12:00-12:45)	Break	PM1 (14:00-14:45) PM2 (15:00-15:45)	PM3 (16:00-16:45) PM4 (17:00-17:45)
	Tuesday	01-Sep	warrnup	Course Intro. and grouping PZN	Configuring Earth & Masonry Architecture, Nour Abuzaid		Rudiments of Linear Algebra and Computer Graphics, PZN	Earth Arch., Ir. Juriaan van Stigt, LEVS Architecten
_1	Thursday	03-Sep	A0:	Computer Geometry & Topology, PZN	Programming I: Introduction to Python, SAZ, HHG, PZN		Design Studio: Ide	eation (Configuring)
	Tuesday	08-Sep	Configuring	Earthship Architecture, SSZ	Programming II: Python and Voxels, SAZ, HHG, PZN		Design Studio: Cons	sultation (Configuring)
2	Thursday	10-Sep	Al: Co	Graphs & Fields, PZN	Programming III: Digital Brick-Laying PZN,SAZ, HHG		Programming IV: Function	is & Calculus, HHG, SAZ, PZN
	Tueday	15-Sep		Material Science of Earth, FVR	Bricking Lecture and Workshop, Ir. Koen Mulder		Karamba Workshoj	p, Ir.Shibo Ren, ARUP
3	Thursday	17-Sep		FEM for Earthy Buildings, FVR	Structural Design with Earth, DRZ		Design Studio: Coi	nsultation (Forming)
	Tuesday			Dynamic Relaxation, PZN	Programming V, NumPy and Dynamic Relaxation, SAZ & Kotryna Valeckaite			nsultation (Forming)
_4	Thursday	24-Sep		FEM and Research, FVR	Graphical Equillibirium Analysis, Prof. Philippe Block, BRG		ProgrammingVI: COMPA	AS, Dr. Tom van Mele, BRG
	Tuesday	29-Sep	aping		JE III. Kiel	.	Design Studio: Consultati	ion (Forming & Structuring)
5	Thursday	01-0ct	A2: \$h		UEDUKSE V		Midterm Review (Pinup Presentation)
	Tuesday	06-0ct			ods we		Design Studio: Consultatio	on (Structuring and Forming)
6	Thursday	08-0ct		Research Pergn	and evelopment		Design Studio: Con:	sultation (Structuring)
	Tuesday	13-0ct	nothring	EXEMINE			Design Studio: Consultat	tion (Construction Design)
7	Thursday	15-0ct	A3: 9	CT AND OCH			Design Studio: Cons	sultation (Structuring)
	Tuesday	20-0ct	menting	Marrica	Graphical Equilibirium Analysis, Prof. Philippe Block, BRG CHERLULE Analysis, Prof. Philippe Block, BRG		Design Studio: Consultat	ion (Code Documentation)
8	Thursday	22-0ct	Docn	ne			Design Studio: Consultation	(Shareable Technical Reports)
	Tuesday	27-0ct						
9	Thursday	29-0ct	Making Presenti				Final Presentat	ios and Feedback
	Tuesday	03-Nov	ation	final submission deadline				
10	Thursday	05-Nov	Evaluation		gradir	ngby insti	uctors	

35

Grade Constituents

 $0(\underline{A0})+15(\underline{A1})+25(\underline{A2})+30(\underline{A3})+10(\underline{D})+20(\underline{P})=100 \text{ pts}$

Grading Rubric

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Exhibition

	Label	Mark	Explanation
Ī	Wretched	1-2	There is not enough evidence for assessing any meaningful contribution attributed to the individual in question.
	Poor	3-4.5	Has done things sporadically but has not had a sufficiently meaningful contribution to the project.
	Deficient	5-5.5	Has contributed to all deliverables but not done enough to reach a sound design, has not fully taken the complexity of the assignment into account, and thus the final results, as well as processes lack sophistication.
	Sufficient	6-6.5	Has done everything necessary at a basic level to get to a sound design but the result as well as the process do not present any innovation. The complexity of the problem has been not been taken into account and the results are primitive or incomplete.
2	Fair	7-7.5	Has adequately utilized existing techniques to produce sound designs, however, the approach is still simplistic and does not fully take into account the complexity of the problem. There are a few useful methods developed in GH or in Python.
	Good	8-8.5	Has gone at least a few small steps beyond existing techniques and attempted to achieve not only sound but also elegant designs. A few useful and noteworthy methods are developed and well documented in GH or in Python.
	Excellent	9-10	Has gone quite a few steps beyond existing techniques, extended the presented knowledge, and achieved not only sound but also elegant designs. There are noteworthy technical contributions in GH or in Python.

Important change compared to the previous rubric:

Learning programming and delivering assignments in Python/MATLAB is optional (highly appreciated but not mandatory or necessary even for getting the highest grade)

Peer Evaluation

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Teachers

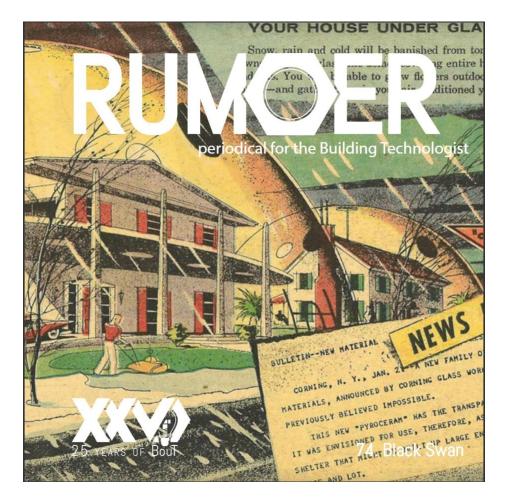
Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern


Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Exhibition

On Earthy

On Generative Design

Gamification of Design

Teachers

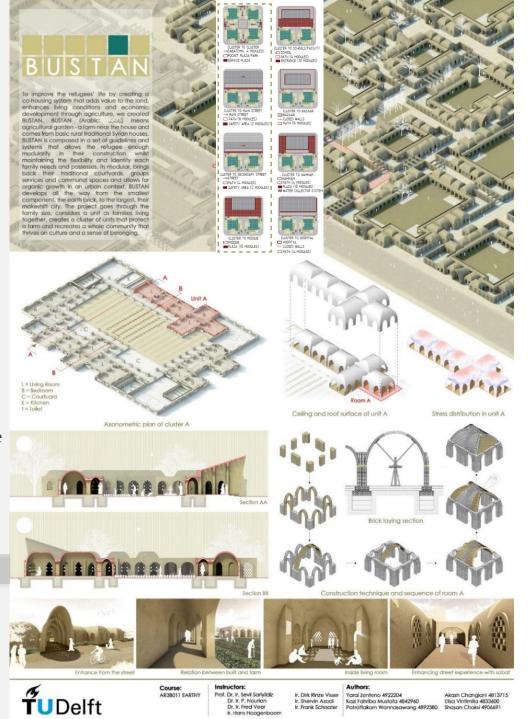
Generative Design

Earth Architecture

Motivation: EA

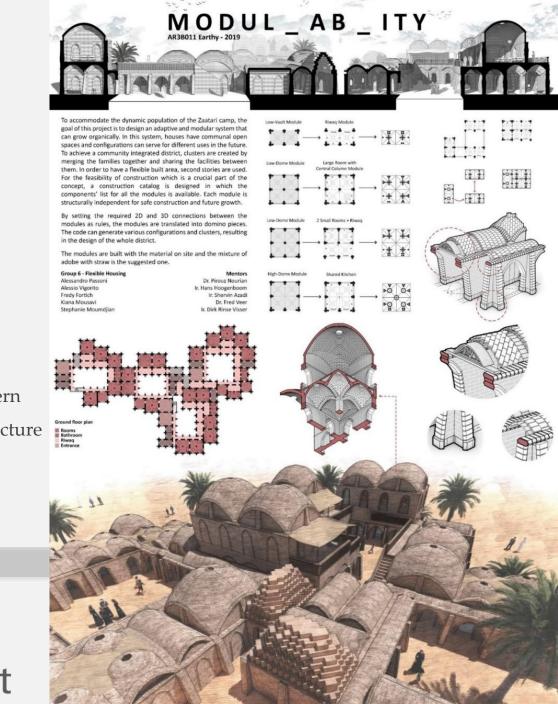
Motivation: GD

Vernacular & Modern


Material-Form-Structure

Learning Activities

Typical Agenda


Evaluation

Learning Goals **Teachers** Generative Design Earth Architecture Motivation: EA Motivation: GD Vernacular & Modern Material-Form-Structure Learning Activities Typical Agenda Evaluation

Angels Smit August 1 Rees (earnelier Association of the state of Association of the Association of Associatio

Learning Goals

Teachers

Generative Design

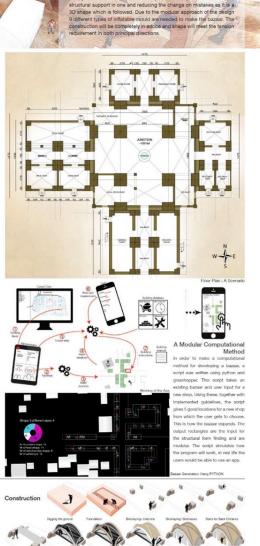
Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure


Learning Activities

Typical Agenda

Evaluation

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Exhibition

JANNAT AL-TOHR

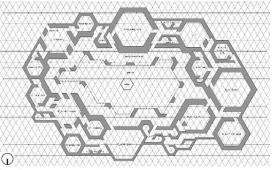
A RETREAT FROM EVERYDAY LIFE

Nikoleta Sidiropoulo

482255, Hans Garrerschlag 4931963, Rick von Dijk 4783190 , Noah van den Berg 4373618, Maximilian Mandat

Berg 4282620 Indat 4931068

Birdeve view


courtvard gardeny view

longitudinal section

cross section

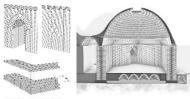
floor plan

EARTHY 2019 AR3B011

Located in the north of Jordan the Zaatari camp houses over 80.000 Syrian refugees for and undetermined period of time.

The main idea behind this project was to give the

The mein idea behind this project was to give the inhabitants of Zaatan a temporary retrieve from their daily lives in the camp. Hammams are a big part of islamic culture, they serve as a place of redxaution and purification. By introducing hammams into the camp we want to give the inhabitants back something they lost during the war.


During the design process of the project the emphasis was placed on the use of the computational approach, as we set out to designing a methodology of designing a hamman that could be used in other locations not just for this camp. This made it so that the construction will not the easiest thing to realize, with the large spans and the irregular shapes we are trying to push the limits of what one can build with acobe.

Chosen Mixture		Material properties used in structural calculations [Mpa	
clay	30%	Youngs modulus	7,6
fine sand	30%	maximum compressive strenght	1,88
coacse sand	40%	maximum compressive strengh after safety factor	1,27
water	10%	maximum tensile strenght	0,254

material properties

karamba analysis of ceilings

construction metho

mugarnas elements and dome

Teachers

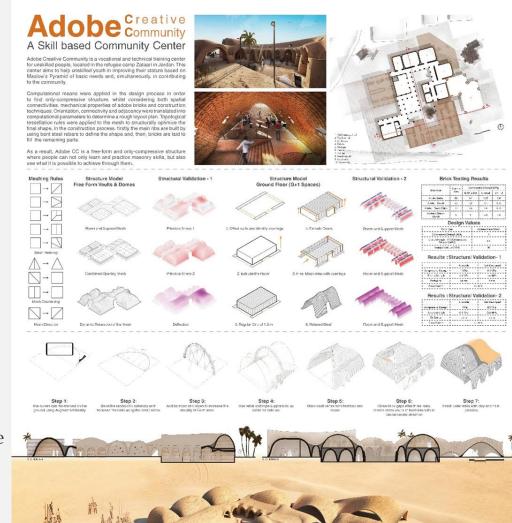
Generative Design

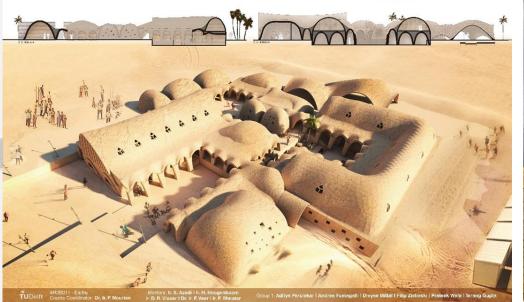
Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern


Material-Form-Structure


Learning Activities

Typical Agenda

Evaluation

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

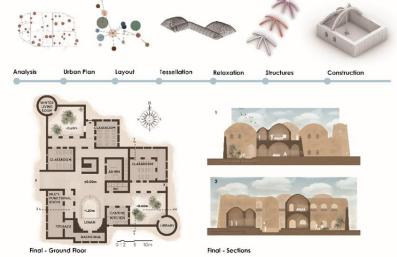
Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Exhibition


Sandcastle - Elementary School

Proposed are urban and architectural solutions for the Syrian refugees in Zaatari Camp, Jordan. An urban master plan of school placements and upgrades was determined based on number of unenrolled children within 400m and proximity to other facilities.

Earthy architecture can provide a high quality solution, and yet a temporary structure since it's "demountable"/destructible and circular. However earth can only be used used in compression-only structures.

One school project has been elaborated into a detailed design embracing a castle style typology. The castle design would create a sense of bolonging and a sate school environment that kids would be motivated to go to.

The graph theoretical method for the layout of spatial configurations of floor plans was used first. This included RFI charts and bubble diagrams. Later meshing, welding, and grasshopper tessellation. Ansys and Karamba 3D structurally verified the dynamically relaxed ceilings by Kangaroo, Python



EARTHY 2.0

Learning Goals

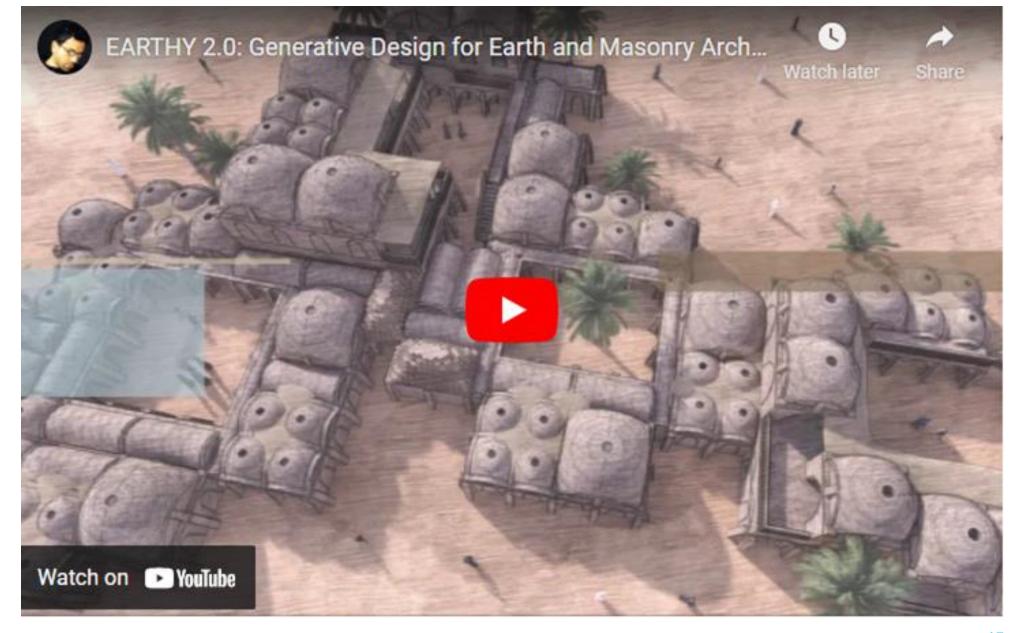
Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD


Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

EARTHY 3.0

Learning Goals

Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

EARTHY 4.0

Learning Goals

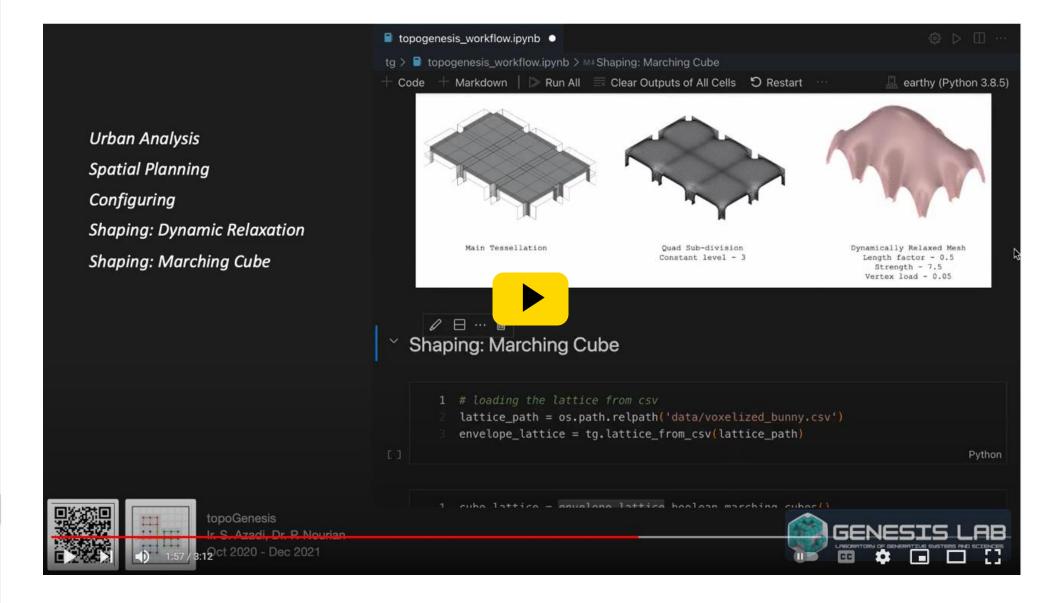
Teachers

Generative Design

Earth Architecture

Motivation: EA

Motivation: GD


Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

EARTHY 5.0?

EARTHY 4.0: Project's eBook

DOI Coming Soon!

EFIRTHY 3.0: Project's eBook

DOI 10.5281/zenodo.4297471

EARTHY 2.0: Project's eBook

DOI 10.5281/zenodo.4297469

EARTHY 1.0: Project's eBook

DOI 10.5281/zenodo.4297480

Motivation: EA

Learning Goals

Generative Design

Earth Architecture

Teachers

Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda

Evaluation

Exhibition

Acknowledgements

We, the instructors of EARTHY, would like to thank the great students of the classes 2018, 2019, 2020, and 2021, as well as the guest lecturers and colleagues who have supported our initiative so far by adding valuable pieces, sharing their knowledge, or giving helpful suggestions:

From TU/e: Ir. Shervin Azadi, from <u>LEVS architecten</u>: Ir. Jurriaan van Stigt, from <u>Arup Amsterdam</u>: Dr. Michele Palmieri & Ir. Shibo Ren, Ir. Kotryna Valeckaite, From <u>Forensic Architecture</u>, Ir. Nour Abu Zaid.

Special thanks to the <u>Block Research Group</u> (Prof. Philippe Block, Dr. Tom van Mele, Dr. Robin Oval, Dr. Mariana Popescu, and Ir. Selina Bitting) in ETH Zurich for delivering excellent guest lectures.

Additionally, we will be indebted to the veterans of Earthy 2.0 and 3.0 for giving amazing motivational lectures: Ir. Prateek Wahi, Ir. Aditya Pravin Soman, Ir. Bezawit Zerayacob Bekele, and Ir. Anastasia Florou

48

Teachers

Generative Design

Earth Architecture

Motivation: EA

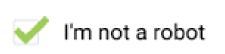
Motivation: GD

Vernacular & Modern

Material-Form-Structure

Learning Activities

Typical Agenda


Evaluation

Exhibition

Questions & Answers

p.nourian----at----tudelft.nl

